A deep neural network for positioning and inter-crystal scatter identification in multiplexed PET detectors: a simulation study

Author:

Enríquez-Mier-y-Terán Francisco EORCID,Zhou Luping,Meikle Steven RORCID,Kyme Andre ZORCID

Abstract

Abstract Objective. High-resolution positron emission tomography (PET) relies on the accurate positioning of annihilation photons impinging the crystal array. However, conventional positioning algorithms in light-sharing PET detectors are often limited due to edge effects and/or the absence of additional information for identifying and correcting scattering within the crystal array (known as inter-crystal scattering). This study explores the feasibility of deep neural network (DNN) techniques for more precise event positioning in finely segmented and highly multiplexed PET detectors with light-sharing. Approach. Initially, a Geant4 Application for Tomographic Emission (GATE) simulation was used to study the spatial and statistical properties of inter-crystal scatter (ICS) events in finely segmented LYSO PET detectors. Next, a DNN for crystal localisation was designed, trained and tested with light distributions of photoelectric (P) and Compton + photoelectric (CP) events simulated using optical GATE and an analytical method to speed up data generation. Using the statistical properties of ICS events, an energy-guided positioning algorithm was then built into the DNN. The positioning algorithm enables selection of the unique or first crystal of interaction in P and CP events, respectively. Performance of the DNN was compared with Anger logic using light distributions from simulated 511 keV point sources placed at different locations around a single PET detector module. Main results. The fraction of events forward and backward scattered in the LYSO detector was 0.54 and 0.46, respectively, whereas naïve application of the Klein–Nishina formulation predicts 70% forward scatter. Despite coarse photodetector data due to signal multiplexing, the DNN demonstrated a crystal classification accuracy of 90% for P events and 82% for CP events. For crystal positioning, the DNN outperformed Anger logic by at least 34% and 14% for P and CP events, respectively. Further improvement is somewhat constrained by the physics—specifically, the ratio of backward to forward scattering of gamma rays within the crystal array being close to 1. This prevents selecting the first crystal of interaction in CP events with a high degree of certainty. Significance. Light sharing and multiplexed PET detectors are common in high-resolution PET, yet their traditional positioning algorithms often underperform due to edge effects and/or the difficulty in correcting ICS events. Our study indicates that DNN-based event positioning has the potential to enhance 2D coincidence event positioning accuracy by nearly a factor of 3 compared to Anger logic. However, further improvements are difficult to foresee without additional information such as event timing.

Funder

Australian Research Council

Consejo Nacional de Humanidades, Ciencias y Tecnologías

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3