Cone beam CT multisource configurations: evaluating image quality, scatter, and dose using phantom imaging and Monte Carlo simulations

Author:

Becker Amy E,Hernandez Andrew M,Schwoebel Paul R,Boone John M

Abstract

Abstract The purpose of this study was to compare various multisource configurations applied to cone beam CT (CBCT) using phantom imaging and Monte Carlo simulations. Image quality, scatter, and dose were evaluated in both overlapping (large cone angle) and collimated (small cone angle) configurations for CBCT. Four x-ray tube configurations were considered: traditional one source, three source overlapping, six source overlapping, and six source collimated. Image quality was evaluated on a prototype breast CT system using the following five phantoms: a Defrise phantom, a previously reported CBCT QA phantom (Corgi), a polyethylene cylinder, and two anthropomorphic phantoms (hand and knee). Scatter contamination and radiation dose were evaluated using Monte Carlo simulations of a voxelized polyethylene cylinder. The modulation of the Defrise phantom disks on average was 2.7X greater for the six source collimated configuration than the six source overlapping configuration. The data lost from cone beam artifact (spatial domain) and the null cone (frequency domain) in the overlapping configuration were completely recovered using the collimated configuration. The maximum scatter-to-primary ratio (SPR) for the overlapping configuration was 0.81 and the maximum SPR for the collimated configuration was 0.26. The average dose and maximum dose was 4X less in the collimated six source configuration when compared with the overlapping configurations. The maximum dose for the overlapping configurations (one, three & six) remained constant, but the average dose for the multisource (three & six source) overlapping configurations increased 25% when compared to the one source configuration. Use of a collimated multisource x-ray tube configuration was shown to provide significant improvements in image quality throughout the cone-beam geometry field-of-view, reduction in scatter contamination, and more efficient use of dose in comparison to both the traditional CBCT geometry with a single source and the overlapping multisource configurations.

Funder

National Science Foundation

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3