Abstract
Abstract
Magnetic field correction factors are needed for absolute dosimetry in magnetic resonance (MR)-linacs. Currently experimental data for magnetic field correction factors, especially for small volume ionization chambers, are largely lacking. The purpose of this work is to establish, independent methods for the experimental determination of magnetic field correction factors
k
B
⃗
,
Q
in an orientation in which the ionization chamber is parallel to the magnetic field. The aim is to confirm previous experiments on the determination of Farmer type ionization chamber correction factors and to gather information about the usability of small-volume ionization chambers for absolute dosimetry in MR-linacs. The first approach to determine
k
B
⃗
,
Q
is based on a cross-calibration of measurements using a conventional linac with an electromagnet and an MR-linac. The absolute influence of the magnetic field in perpendicular orientation is quantified with the help of the conventional linac and the electromagnet. The correction factors for the parallel orientation are then derived by combining these measurements with relative measurements in the MR-linac. The second technique utilizes alanine electron paramagnetic resonance dosimetry. The alanine system as well as several ionization chambers were directly calibrated with the German primary standard for absorbed dose to water. Magnetic field correction factors for the ionization chambers were determined by a cross-calibration with the alanine in an MR-linac. Important quantities like
k
B
⃗
,
Q
for Farmer type ionization chambers in parallel orientation and the change of the dose to water due the magnetic field
c
B
⃗
have been confirmed. In addition, magnetic field correction factors have been determined for small volume ionization chambers in parallel orientation. The electromagnet-based measurements of
k
B
⃗
,
Q
for
7
MV
/
1.5
T
MR-linacs and parallel ionization chamber orientations resulted in 0.9926(22), 0.9935(31) and 0.9841(27) for the PTW 30013, the PTW 31010 and the PTW 31021, respectively. The measurements based on the second technique resulted in values for
k
B
⃗
,
Q
of 0.9901(72), 0.9955(72), and 0.9885(71). Both methods show excellent accuracy and reproducibility and are therefore suitable for the determination of magnetic field correction factors. Small-volume ionization chambers showed a variation in the resulting values for
k
B
⃗
,
Q
and should be cross-calibrated instead of using tabulated values for correction factors.
Funder
Deutsche Forschungsgemeinschaft
Horizon 2020 Framework Programme
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献