Challenges of conducting quantitative ultrasound with a multimodal optical imaging system

Author:

Pinkert Michael A,Hall Timothy JORCID,Eliceiri Kevin WORCID

Abstract

Abstract High-frequency quantitative ultrasound is a potential non-invasive source of imaging cell-tissue scale biomarkers for major diseases such as heart disease, cancer, and preterm birth. However, one of the barriers to developing such biomarkers is that it is labor-intensive to compare quantitative ultrasound images to optical images of the tissue structure. We have previously developed a multiscale imaging system that can obtain registered qualitative ultrasound and optical images, but there are further technical challenges to obtaining quantitative data: System-specific details of obtaining and processing data with Verasonics high-frequency transducers; the need for high-frequency reference phantoms; and off-axis clutter from imaging above a glass coverslip. This paper provides a characterization of the Verasonics ultrasound system with the 18.5 MHz L22-14v and 28.5 MHz L38-22v transducers, describes the construction of high-frequency reference phantoms, and details methods for reducing off-axis clutter. The paper features a demonstration multiscale image of a wild type mouse mammary gland that incorporates quantitative ultrasound with both transducers and second harmonic generation microscopy. These advances demonstrate a way to obtain, on a single system with a cohesive and integrated pipeline, quantitative ultrasound data that is correlated with optical imaging without the need for extensive sample preparation.

Funder

National Institute of General Medical Sciences

National Science Foundation

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3