Interlaboratory Comparison of Backscatter Coefficient Estimates for Tissue-Mimicking Phantoms

Author:

Anderson Janelle J.1,Herd Maria-Teresa1,King Michael R.2,Haak Alexander2,Hafez Zachary T.2,Song Jun2,Oelze Michael L.2,Madsen Ernest L.1,Zagzebski James A.1,O'Brien William D.2,Hall Timothy J.2

Affiliation:

1. University of Wisconsin-Madison Wisconsin Institutes for Medical Research 1111 Highland Ave. Madison, WI 53705

2. Bioacoustics Research Laboratory Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 405 N. Mathews Urbana, IL 61801

Abstract

Utrasonic backscatter is useful for characterizing tissues and several groups have reported methods for estimating backscattering properties. Previous interlaboratory comparisons have been made to test the ability to accurately estimate the backscatter coefficient (BSC) by different laboratories around the world. Results of these comparisons showed variability in BSC estimates but were acquired only for a relatively narrow frequency range, and, most importantly, lacked reference to any independent predictions from scattering theory. The goal of this study was to compare Faran-scattering-theory predictions with cooperatively-measured backscatter coefficients for low-attenuating and tissue-like attenuating phantoms containing glass sphere scatterers of different sizes for which BSCs can independently be predicted. Ultrasonic backscatter measurements were made for frequencies from 1 to 12 MHz. Backscatter coefficients were estimated using two different planar-reflector techniques at two laboratories for two groups of phantoms. Excellent agreement was observed between BSC estimates from both laboratories. In addition, good agreement with the predictions of Faran's theory was obtained, with average fractional (bias) errors ranging from 8–14%. This interlaboratory comparison demonstrates the ability to accurately estimate parameters derived from the BSC, including an effective scatterer size and the acoustic concentration, both of which may prove useful for diagnostic applications of ultrasound tissue characterization.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3