Modulation transfer function (MTF) evaluation for x-ray phase imaging system employing attenuation masks

Author:

Havariyoun Glafkos,Massimi LorenzoORCID,Hagen CharlotteORCID,Endrizzi MarcoORCID,Olivo AlessandroORCID

Abstract

Abstract Objective. Attenuation masks can be used in x-ray imaging systems to increase their inherent spatial resolution and/or make them sensitive to phase effects, a typical example being Edge Illumination x-ray phase contrast imaging (EI-XPCI). This work investigates the performance of a mask-based system such as EI-XPCI in terms of Modulation Transfer Function (MTF), in the absence of phase effects. Approach. Pre-sampled MTF measurements, using an edge, were performed on the same system implemented without masks, with non-skipped masks and finally with skipped masks (i.e. masks in which apertures illuminate every other pixel row/column). Results are compared to simulations and finally images of a resolution bar pattern acquired with all the above setups are presented. Main results. Compared to the detector’s inherent MTF, the non-skipped mask setup provides improved MTF results. In comparison to an ideal case where signal spill-out into neighbouring pixels is negligible, this improvement takes place only at specific frequencies of the MTF, dictated by the spatial repetition of the spill-out signal. This is limited with skipped masks, which indeed provide further MTF improvements over a larger frequency range. Experimental MTF measurements are supported through simulation and resolution bar pattern images. Significance. This work has quantified the improvement in MTF due to the use of attenuation masks and lays the foundation for how acceptance and routine quality control tests will have to be modified when systems using masks are introduced in clinical practice and how MTF results will compare to those of conventional imaging systems.

Funder

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Binaphthol diimide scintillators for X-ray imaging;Science China Materials;2024-06-20

2. Noise Reduction for a Virtual Grid Using a Generative Adversarial Network in Breast X-ray Images;Journal of Imaging;2023-12-07

3. Image Quality Assessment of Breast Cancer with Various Modalities;2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom);2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3