Noise Reduction for a Virtual Grid Using a Generative Adversarial Network in Breast X-ray Images

Author:

Lim Sewon1,Nam Hayun2,Shin Hyemin2,Jeong Sein2,Kim Kyuseok3,Lee Youngjin2

Affiliation:

1. Department of Health Science, General Graduate School of Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea

2. Department of Radiological Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea

3. Department of Biomedical Engineering, Eulji University, 533, Sanseong-daero, Sujung-gu, Seongnam-si 13135, Republic of Korea

Abstract

In this study, we aimed to address the issue of noise amplification after scatter correction when using a virtual grid in breast X-ray images. To achieve this, we suggested an algorithm for estimating noise level and developed a noise reduction algorithm based on generative adversarial networks (GANs). Synthetic scatter in breast X-ray images were collected using Sizgraphy equipment and scatter correction was performed using dedicated software. After scatter correction, we determined the level of noise using noise-level function plots and trained a GAN using 42 noise combinations. Subsequently, we obtained the resulting images and quantitatively evaluated their quality by measuring the contrast-to-noise ratio (CNR), coefficient of variance (COV), and normalized noise–power spectrum (NNPS). The evaluation revealed an improvement in the CNR by approximately 2.80%, an enhancement in the COV by 12.50%, and an overall improvement in the NNPS across all frequency ranges. In conclusion, the application of our GAN-based noise reduction algorithm effectively reduced noise and demonstrated the acquisition of improved-quality breast X-ray images.

Funder

Ministry of Science and ICT

National Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3