A finite element method for the determination of the relative response of ionization chambers in MR-linacs: simulation and experimental validation up to 1.5 T

Author:

Pojtinger StefanORCID,Kapsch Ralf-Peter,Dohm Oliver Steffen,Thorwarth Daniela

Abstract

Abstract In magnetic resonance (MR) guided radiotherapy, the magnetic field-dependent change in the dose response of ionization chambers is typically included by means of a correction factor . This factor can be determined experimentally or calculated by means of Monte Carlo (MC) simulations. To date, a small number of experimental values for at magnetic flux densities above 1.2 T have been available to benchmark these simulations. Furthermore, MC simulations of the dose response of ionization chambers in magnetic fields (where such simulations are based on manufacturer blueprints) have been shown to converge with results that deviate considerably from experimental values for orientations where the magnetic field is perpendicular to the axis of the ionization chamber and the influence of the magnetic field is largest. In this work, was simulated for a PTW 30013 Farmer ionization chamber using an approach based on finite element simulations. First, the electrical field inside the ionization chamber was simulated using finite element methods. The collecting volume of the ionization was not defined in terms of the physical dimensions of the detector but in terms of the simulated electrical field lines inside the chamber. Then, an MC simulation of the dose response of a Farmer type chamber (PTW 30013) was performed using EGSnrc with a dedicated package to consider the effect of the magnetic field. In the second part, was determined experimentally for two different PTW 30013 ionization chambers for a range of magnetic flux densities between B  =  0 and 1.5 T, covering the range of commercially available MR-linacs. In the perpendicular orientation, the maximum difference between the simulated values for and the experimental values for was 0.31(30)% and the minimum difference was 0.02(24)%. For the PTW 30013 ionization chambers, the experimental values for were 0.9679(1) and 0.9681(1) for a magnetic flux density of 1.5 T. The value resulting from the simulation was 0.967(3). The comparison of the correction factors simulated using this new approach with the experimental values determined in this study shows excellent agreement for all magnetic flux densities up to 1.5 T. Integrating the explicit simulation of the collection volume inside the ionization chambers into the MC simulation model significantly improves simulations of the chamber response in magnetic fields. The results presented suggest that intra-type variations for may be neglectable for ionization chambers of the PTW 30013 type.

Funder

Deutsche Forschungsgemeinschaft

EURAMET

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference20 articles.

1. Abstract

2. On the performance of monitor chambers to measure the output of medical linear accelerators for high-precision dosimetric investigations;Kapsch,2009

3. The EGSnrc code system: Monte Carlo Simulation of electron and photon transport;Kawrakow,2013

4. Pre-irradiation effects on ionization chambers used in radiation therapy;Ken Shortt;Phys. Med. Biol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3