End-to-end deep learning for interior tomography with low-dose x-ray CT

Author:

Han YoseobORCID,Wu DufanORCID,Kim Kyungsang,Li Quanzheng

Abstract

Abstract Objective. There are several x-ray computed tomography (CT) scanning strategies used to reduce radiation dose, such as (1) sparse-view CT, (2) low-dose CT and (3) region-of-interest (ROI) CT (called interior tomography). To further reduce the dose, sparse-view and/or low-dose CT settings can be applied together with interior tomography. Interior tomography has various advantages in terms of reducing the number of detectors and decreasing the x-ray radiation dose. However, a large patient or a small field-of-view (FOV) detector can cause truncated projections, and then the reconstructed images suffer from severe cupping artifacts. In addition, although low-dose CT can reduce the radiation exposure dose, analytic reconstruction algorithms produce image noise. Recently, many researchers have utilized image-domain deep learning (DL) approaches to remove each artifact and demonstrated impressive performances, and the theory of deep convolutional framelets supports the reason for the performance improvement. Approach. In this paper, we found that it is difficult to solve coupled artifacts using an image-domain convolutional neural network (CNN) based on deep convolutional framelets. Significance. To address the coupled problem, we decouple it into two sub-problems: (i) image-domain noise reduction inside the truncated projection to solve low-dose CT problem and (ii) extrapolation of the projection outside the truncated projection to solve the ROI CT problem. The decoupled sub-problems are solved directly with a novel proposed end-to-end learning method using dual-domain CNNs. Main results. We demonstrate that the proposed method outperforms the conventional image-domain DL methods, and a projection-domain CNN shows better performance than the image-domain CNNs commonly used by many researchers.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3