Hierarchical decomposed dual-domain deep learning for sparse-view CT reconstruction

Author:

Han YoseobORCID

Abstract

Abstract Objective. X-ray computed tomography employing sparse projection views has emerged as a contemporary technique to mitigate radiation dose. However, due to the inadequate number of projection views, an analytic reconstruction method utilizing filtered backprojection results in severe streaking artifacts. Recently, deep learning (DL) strategies employing image-domain networks have demonstrated remarkable performance in eliminating the streaking artifact caused by analytic reconstruction methods with sparse projection views. Nevertheless, it is difficult to clarify the theoretical justification for applying DL to sparse view computed tomography (CT) reconstruction, and it has been understood as restoration by removing image artifacts, not reconstruction. Approach. By leveraging the theory of deep convolutional framelets (DCF) and the hierarchical decomposition of measurement, this research reveals the constraints of conventional image and projection-domain DL methodologies, subsequently, the research proposes a novel dual-domain DL framework utilizing hierarchical decomposed measurements. Specifically, the research elucidates how the performance of the projection-domain network can be enhanced through a low-rank property of DCF and a bowtie support of hierarchical decomposed measurement in the Fourier domain. Main results. This study demonstrated performance improvement of the proposed framework based on the low-rank property, resulting in superior reconstruction performance compared to conventional analytic and DL methods. Significance. By providing a theoretically justified DL approach for sparse-view CT reconstruction, this study not only offers a superior alternative to existing methods but also opens new avenues for research in medical imaging. It highlights the potential of dual-domain DL frameworks to achieve high-quality reconstructions with lower radiation doses, thereby advancing the field towards safer and more efficient diagnostic techniques. The code is available at https://github.com/hanyoseob/HDD-DL-for-SVCT.

Publisher

IOP Publishing

Reference38 articles.

1. O(n/sup 2/log/sub 2/n) filtered backprojection reconstruction algorithm for tomography;Basu;IEEE Trans. Image Process.,2000

2. Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT;Bian;Phys. Med. Biol.,2010

3. Low-dose CT with a residual encoder-decoder convolutional neural network;Chen;IEEE Trans. Med. Imaging,2017

4. Bcd-net for low-dose CT reconstruction: acceleration, convergence, and generalization;Chun,2019

5. Sinogram interpolation for sparse-view micro-CT with deep learning neural network;Dong,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3