Author:
Zou Qin,Huang Yuqing,Gao Junling,Zhang Bo,Wang Diya,Wan Mingxi
Abstract
Abstract
Objective. Three-dimensional (3D) ultrasound (US) is needed to provide sonographers with a more intuitive panoramic view of the complex anatomical structure, especially the musculoskeletal system. In actual scanning, sonographers may perform fast scanning using a one-dimensional (1D) array probe .at random angles to gain rapid feedback, which leads to a large US image interval and missing regions in the reconstructed volume. Approach. In this study, a 3D residual network (3D-ResNet) modified by a 3D global residual branch (3D-GRB) and two 3D local residual branches (3D-LRBs) was proposed to retain detail and reconstruct high-quality 3D US volumes with high efficiency using only sparse two-dimensional (2D) US images. The feasibility and performance of the proposed algorithm were evaluated on ex vivo and in vivo sets. Main r
esults. High-quality 3D US volumes in the fingers, radial and ulnar bones, and metacarpophalangeal joints were obtained by the 3D-ResNet, respectively. Their axial, coronal, and sagittal slices exhibited rich texture and speckle details. Compared with kernel regression, voxel nearest-neighborhood, squared distance weighted methods, and a 3D convolution neural network in the ablation study, the mean peak-signal-to-noise ratio and mean structure similarity of the 3D-ResNet were up to 28.53 ± 1.29 dB and 0.98 ± 0.01, respectively, and the corresponding mean absolute error dropped to 0.023 ± 0.003 with a better resolution gain of 1.22 ± 0.19 and shorter reconstruction time. Significance. These results illustrate that the proposed algorithm can rapidly reconstruct high-quality 3D US volumes in the musculoskeletal system in cases of a large amount of data loss. This suggests that the proposed algorithm has the potential to provide rapid feedback and precise analysis of stereoscopic details in complex and meticulous musculoskeletal system scanning with a less limited scanning speed and pose variations for the 1D array probe.
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference47 articles.
1. Higher order spectra based deconvolution of ultrasound images;Abeyratne;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,1995
2. Wasserstein generative adversarial networks;Arjovsky,2017
3. Three-dimensional freehand ultrasound: image reconstruction and volume analysis;Barry;Ultrasound Med. Biol.,1997
4. Imaging performance for two row-column arrays;Bouzari;IEEE Trans. Ultrason. Ferroelectr. Frequency Control,2019
5. Toward quantitative assessment of rheumatoid arthritis using volumetric ultrasound;Cao;IEEE Trans. Biomed. Eng.,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献