Super-resolution reconstruction of ultrasound image using a modified diffusion model

Author:

Liu TianyuORCID,Han Shuai,Xie Linru,Xing Wenyu,Liu Chengcheng,Li Boyi,Ta Dean

Abstract

Abstract Objective. This study aims to perform super-resolution (SR) reconstruction of ultrasound images using a modified diffusion model, designated as the diffusion model for ultrasound image super-resolution (DMUISR). SR involves converting low-resolution images to high-resolution ones, and the proposed model is designed to enhance the suitability of diffusion models for this task in the context of ultrasound imaging. Approach. DMUISR incorporates a multi-layer self-attention (MLSA) mechanism and a wavelet-transform based low-resolution image (WTLR) encoder to enhance its suitability for ultrasound image SR tasks. The model takes interpolated and magnified images as input and outputs high-quality, detailed SR images. The study utilized 1,334 ultrasound images from the public fetal head-circumference dataset (HC18) for evaluation. Main results. Experiments were conducted at 2× , 4× , and 8×  magnification factors. DMUISR outperformed mainstream ultrasound SR methods (Bicubic, VDSR, DECUSR, DRCN, REDNet, SRGAN) across all scales, providing high-quality images with clear structures and rich detailed textures in both hard and soft tissue regions. DMUISR successfully accomplished multiscale SR reconstruction while suppressing over-smoothing and mode collapse problems. Quantitative results showed that DMUISR achieved the best performance in terms of learned perceptual image patch similarity, with a significant decrease of over 50% at all three magnification factors (2× , 4× , and 8× ), as well as improvements in peak signal-to-noise ratio and structural similarity index measure. Ablation experiments validated the effectiveness of the MLSA mechanism and WTLR encoder in improving DMUISR’s SR performance. Furthermore, by reducing the number of diffusion steps, the computational time of DMUISR was shortened to nearly one-tenth of its original while maintaining image quality without significant degradation. Significance. This study demonstrates that the modified diffusion model, DMUISR, provides superior performance for SR reconstruction of ultrasound images and has potential in improving imaging quality in the medical ultrasound field.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

IOP Publishing

Reference42 articles.

1. Super-resolution of 2D ultrasound images and videos;Cammarasana;Med. Biol. Eng. Comput.,2023

2. Deep CNN-based ultrasound super-resolution for high-speed high-resolution B-mode imaging;Choi,2018

3. Prenatal diagnosis of fetal cerebral abnormalities by ultrasonography and magnetic resonance imaging;D’Ercole;Eur. J. Obstetrics Gynecol. Reprod. Biol.,1993

4. Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved?;Flohr;J. Cardiovasc. Comput. Tomogr.,2009

5. Ultrasound accuracy in prenatal diagnosis of abnormal placentation of posterior placenta previa;Garofalo;Eur. J. Obstetrics Gynecol. Reprod. Biol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3