Abstract
Abstract
Patient-specific quality assurance (PSQA) of volumetric modulated arc therapy (VMAT) to assure accurate treatment delivery is resource-intensive and time-consuming. Recently, machine learning has been increasingly investigated in PSQA results prediction. However, the classification performance of models at different criteria needs further improvement and clinical validation (CV), especially for predicting plans with low gamma passing rates (GPRs). In this study, we developed and validated a novel multi-task model called autoencoder based classification-regression (ACLR) for VMAT PSQA. The classification and regression were integrated into one model, both parts were trained alternatively while minimizing a defined loss function. The classification was used as an intermediate result to improve the regression accuracy. Different tasks of GPRs prediction and classification based on different criteria were trained simultaneously. Balanced sampling techniques were used to improve the prediction accuracy and classification sensitivity for the unbalanced VMAT plans. Fifty-four metrics were selected as inputs to describe the plan modulation-complexity and delivery-characteristics, while the outputs were PSQA GPRs. A total of 426 clinically delivered VMAT plans were used for technical validation (TV), and another 150 VMAT plans were used for CV to evaluate the generalization performance of the model. The ACLR performance was compared with the Poisson Lasso (PL) model and found significant improvement in prediction accuracy. In TV, the absolute prediction error (APE) of ACLR was 1.76%, 2.60%, and 4.66% at 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively; whereas the APE of PL was 2.10%, 3.04%, and 5.29% at 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively. No significant difference was found between CV and TV in prediction accuracy. ACLR model set with 3%/3 mm can achieve 100% sensitivity and 83% specificity. The ACLR model could classify the unbalanced VMAT QA results accurately, and it can be readily applied in clinical practice for virtual VMAT QA.
Funder
Natural Science Foundation of Beijing
National Natural Science Foundation of China
Interdisciplinary Medicine Seed Found of Peking University
NIH/NCI P30 Cancer Center Support Grant
Beijing Municipal Commission of science and technology collaborative innovation project
Strategic Priority Research Program of Chinese Academy of Science
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献