Blind deconvolution in model-based iterative reconstruction for CT using a normalized sparsity measure

Author:

Hehn LorenzORCID,Tilley StevenORCID,Pfeiffer Franz,Stayman J WebsterORCID

Abstract

Abstract Model-based iterative reconstruction techniques for CT that include a description of the noise statistics and a physical forward model of the image formation process have proven to increase image quality for many applications. Specifically, including models of the system blur into the physical forward model and thus implicitly performing a deconvolution of the projections during tomographic reconstruction, could demonstrate distinct improvements, especially in terms of resolution. However, the results strongly rely on an exact characterization of all components contributing to the system blur. Such characterizations can be laborious and even a slight mismatch can diminish image quality significantly. Therefore, we introduce a novel objective function, which enables us to jointly estimate system blur parameters during tomographic reconstruction. Conventional objective functions are biased in terms of blur and can yield lowest cost to blurred reconstructions with low noise levels. A key feature of our objective function is a new normalized sparsity measure for CT based on total-variation regularization, constructed to be less biased in terms of blur. We outline a solving strategy for jointly recovering low-dimensional blur parameters during tomographic reconstruction. We perform an extensive simulation study, evaluating the performance of the regularization and the dependency of the different parts of the objective function on the blur parameters. Scenarios with different regularization strengths and system blurs are investigated, demonstrating that we can recover the blur parameter used for the simulations. The proposed strategy is validated and the dependency of the objective function with the number of iterations is analyzed. Finally, our approach is experimentally validated on test-bench data of a human wrist phantom, where the estimated blur parameter coincides well with visual inspection. Our findings are not restricted to attenuation-based CT and may facilitate the recovery of more complex imaging model parameters.

Funder

Deutsche Forschungsgemeinschaft

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference28 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3