Estimating the modulating effect of lung tissue in particle therapy using a clinical CT voxel histogram analysis

Author:

Flatten Veronika,Michael Burg Jan,Witt Matthias,Derksen Larissa,Fragoso Costa Pedro,Wulff JörgORCID,Bäumer ChristianORCID,Timmermann Beate,Weber Uli,Vorwerk Hilke,Engenhart-Cabillic Rita,Zink KlemensORCID,Baumann Kilian-SimonORCID

Abstract

Abstract To treat lung tumours with particle therapy, different additional tasks and challenges in treatment planning and application have to be addressed thoroughly. One of these tasks is the quantification and consideration of the Bragg peak (BP) degradation due to lung tissue: as lung is an heterogeneous tissue, the BP is broadened when particles traverse the microscopic alveoli. These are not fully resolved in clinical CT images and thus, the effect is not considered in the dose calculation. In this work, a correlation between the CT histograms of heterogeneous material and the impact on the BP curve is presented. Different inorganic materials were scanned with a conventional CT scanner and additionally, the BP degradation was measured in a proton beam and was then quantified. A model is proposed that allows an estimation of the modulation power by performing a histogram analysis on the CT scan. To validate the model for organic samples, a second measurement series was performed with frozen porcine lunge samples. This allows to investigate the possible limits of the proposed model in a set-up closer to clinical conditions. For lung substitutes, the agreement between model and measurement is within ±0.05 mm and for the organic lung samples, within ±0.15 mm. This work presents a novel, simple and efficient method to estimate if and how much a material or a distinct region (within the lung) is degrading the BP on the basis of a common clinical CT image. Up until now, only a direct in-beam measurement of the region or material of interest could answer this question.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3