Impact of spot reduction on the effectiveness of rescanning in pencil beam scanned proton therapy for mobile tumours

Author:

Bertschi StefanieORCID,Krieger MiriamORCID,Weber Damien C,Lomax Antony J,van de Water Steven

Abstract

Abstract Objective. In pencil beam scanning proton therapy, individually calculated and positioned proton pencil beams, also referred to as ‘spots’, are used to achieve a highly conformal dose distributions to the target. Recent work has shown that this number of spots can be substantially reduced, resulting in shorter delivery times without compromising dosimetric plan quality. However, the sensitivity of spot-reduced plans to tumour motion is unclear. Although previous work has shown that spot-reduced plans are slightly more sensitive to small positioning inaccuracies of the individual pencil beams, the resulting shorter delivery times may allow for more rescanning. The aim of this study was to assess the impact of tumour motion and the effectiveness of 3D volumetric rescanning for spot-reduced treatment plans. Approach. Three liver and two lung cancer patients with non-negligible motion amplitudes were analysed. Conventional and probabilistic internal target volume definitions were used for planning considering single or multiple breathing cycles respectively. For each patient, one clinical and two spot-reduced treatment plans were created using identical field geometries. 4D dynamic dose calculations were then performed and resulting target coverage (V95%), dose homogeneity (D5%–D95%) and hot spots (D2%) evaluated for 1–25 rescans. Main results. Over all patients investigated, spot reduction reduced the number of spots by 91% in comparison to the clinical plan, reducing field delivery times by approximately 50%. This reduction, together with the substantially increased dose per spot resulting from the spot reduction process, allowed for more rescans in the same amount of time as for clinical plans and typically improved dosimetric parameters, in some cases to values better than the reference static (3D calculated) plans. However, spot-reduced plans had an increased possibility of interference with the breathing cycle, especially for simulations of perfectly repeatable breathing. Significance. For the patients analysed in this study, spot-reduced plans were found to be a valuable option to increase the efficiency of 3D volumetric rescanning for motion mitigation, if attention is paid to possible interference patterns.

Funder

Swiss National Science Foundation

EU-H2020 project ‘INSPIRE’

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3