An integrated Monte Carlo track-structure simulation framework for modeling inter and intra-track effects on homogenous chemistry

Author:

D-Kondo J NaokiORCID,Garcia-Garcia Omar R,LaVerne Jay A,Faddegon BruceORCID,Schuemann JanORCID,Shin Wook-GeunORCID,Ramos-Méndez JoséORCID

Abstract

Abstract Objective. The TOPAS-nBio Monte Carlo track structure simulation code, a wrapper of Geant4-DNA, was extended for its use in pulsed and longtime homogeneous chemistry simulations using the Gillespie algorithm. Approach. Three different tests were used to assess the reliability of the implementation and its ability to accurately reproduce published experimental results: (1) a simple model with a known analytical solution, (2) the temporal evolution of chemical yields during the homogeneous chemistry stage, and (3) radiolysis simulations conducted in pure water with dissolved oxygen at concentrations ranging from 10 μM to 1 mM with [H2O2] yields calculated for 100 MeV protons at conventional and FLASH dose rates of 0.286 Gy s−1 and 500 Gy s−1, respectively. Simulated chemical yield results were compared closely with data calculated using the Kinetiscope software which also employs the Gillespie algorithm. Main results. Validation results in the third test agreed with experimental data of similar dose rates and oxygen concentrations within one standard deviation, with a maximum of 1% difference for both conventional and FLASH dose rates. In conclusion, the new implementation of TOPAS-nBio for the homogeneous long time chemistry simulation was capable of recreating the chemical evolution of the reactive intermediates that follow water radiolysis. Significance. Thus, TOPAS-nBio provides a reliable all-in-one chemistry simulation of the physical, physico-chemical, non-homogeneous, and homogeneous chemistry and could be of use for the study of FLASH dose rate effects on radiation chemistry.

Funder

Center for Scientific Review

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3