Groundwater age of spring discharges under changing permafrost conditions: the Khangai Mountains in central Mongolia

Author:

Hiyama TetsuyaORCID,Dashtseren Avirmed,Asai Kazuyoshi,Kanamori Hironari,Iijima Yoshihiro,Ishikawa Mamoru

Abstract

Abstract Obtaining a better understanding of groundwater dynamics in permafrost zones is a critical issue in permafrost hydrology. This includes assessing the impacts of climate change on permafrost thaw and ground ice-melt. Both permafrost thaw and ground ice-melt can be related to groundwater discharges (i.e. spring discharges), and spring water is an important local water resource; accordingly, changes in these processes can have large impacts on local people and their subsistence activities. To detect permafrost thaw and ground ice-melt in the permafrost zone of Mongolia, groundwater ages of several spring discharges were determined using two transient tracers: tritium (3H) and chlorofluorocarbons (CFCs). Spring water samples were collected seasonally from 2015 to 2019 at seven spring sites around the Khangai Mountains in central Mongolia. The sites included two thermokarst landscapes on the northern and southern sides of the mountains. The 3H and CFC concentrations in the spring water in the thermokarst landscapes were very low, especially on the southern side of the mountains, and the estimated mean groundwater age for these sites was older than that for the other sampled springs. Consequently, the young water ratios of the thermokarst sites were lower than those for the other springs. This ratio, however, showed a gradual increase with time, which indicates that recently recharged rainwater began to contribute to the spring discharge at the thermokarst sites. An atmospheric water budget analysis indicated that net recharge from modern and recent precipitation to shallow groundwater in the summer season was almost zero on the southern side of the mountains. Thus, we inferred that the spring water at the thermokarst sites on the southern side of the mountains contained large amounts of ground ice-melt water.

Funder

Japan Society for the Promotion of Science

Institute for Space-Earth Environmental Research, Nagoya University

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3