Improvement of human-induced wildfire occurrence modeling from a spatial variation of anthropogenic ignition factor in the CLM5

Author:

Cai LeiORCID,Shi Wenwen,Shi Weiyu,Li FangORCID,Alexeev Vladimir A,Shiklomanov AlexanderORCID,Yang Ruowen,Tan Shucheng

Abstract

Abstract Wildfire is an essential form of natural disturbance for the Earth system, and it is challenging for the current numerical models to accurately retrieve the spatiotemporal distributions of wildfire occurrence. One of the deficiencies could result from the parameterization of anthropogenic impact on wildfire occurrences. This study develops an approach to advance human-induced wildfire modeling by calibrating the parameter of human ignition count (HIC) in the fire module of the Community Land Model version 5. This study modifies the source code to allow a grid-scale variation of HIC. Sensitivity experiments with different grid-uniform HIC values are conducted to quantify the model biases with satellite-based observation data as the reference. The theoretically optimal HIC for each grid is obtained by linear rescaling the HIC based on the model biases in the sensitivity tests. The model evaluation takes place in southwest China where there is complex terrain and land use/land cover features. The involvement of grid-scale HIC significantly reduces the model bias in the climatology of wildfire occurrence. The pattern correlation coefficient increases from 0.57 to 0.78, and the root mean square error (RMSE) decreases from 0.58 to 0.18. The correlation coefficient of the annual sums of wildfire occurrences increases from 0.69 to 0.77, and the RMSE decreases from 560.8 to 146.4. A global-scale test verifies that such an approach can be extended to multiple regions with a reasonable scale of population density and economy.

Funder

Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Yunnan University Graduate Research and Innovation Fund

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3