Large-scale citizen science programs can support ecological and climate change assessments

Author:

Crimmins Theresa MORCID,Crimmins Michael AORCID

Abstract

Abstract Large-scale citizen science programs have the potential to support national climate and ecosystem assessments by providing data useful in estimating both status and trends in key phenomena. In this study, we demonstrate how opportunistic, unbalanced observations of biological phenomena contributed through a national-scale citizen science program can be used to (a) identify and evaluate candidate biotic climate change indicators and (b) generate yearly estimates of status of selected indicators. Using observations of plant phenology contributed to Nature’s Notebook, the USA National Phenology Network’s citizen science program, we demonstrate a procedure for identifying biotic indicators as well as several approaches leveraging these opportunistically-sampled data points to generate yearly status measures. Because the period of record for this dataset is relatively short and inconsistently sampled (13 yr), we focus on estimates of status, though over time, these measurements could be leveraged to also estimate trends. We first applied various spatial, seasonal, and biological criteria to narrow down the list of candidate indicators. We then constructed latitude-elevation models for individual species-phenophase events using all observations. This allowed us to visualize differences between predicted and reported phenophase onset dates in a year as anomalies, with the expectation that these anomalies—representing earlier or later activity in the species of interest—reflect plant response to local springtime temperatures. Plotting yearly anomalies revealed regions with geographic coherence as well as outliers. We also show how yearly anomaly values can be reduced to a single measure to characterize the early or late nature of phenological activity in a particular year. Finally, we demonstrate how the latitude-elevation models can be leveraged to characterize the pace at which phenological transitions occur along latitude gradients on a year-by-year basis.

Funder

U.S. National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference51 articles.

1. The false spring of 2012, earliest in North American record;Ault;Eos,2013

2. Early bird special: spring pops up super early in much of US;Borenstein

3. Improving big citizen science data: moving beyond haphazard sampling;Callaghan;PLoS Biol.,2019

4. Changes in the onset of spring in the western United States;Cayan;Bull. Am. Meteorol.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3