Abstract
Abstract
While the advective flux from cool melt runoff can be a significant source of thermal energy to mountainous rivers, it has been a much less addressed process in river temperature modeling and thus our understanding is limited with respect to the spatiotemporal effect of melt on river temperatures at the watershed scale. In particular, the extent and magnitude of the melt cooling effect in the context of a warming climate are not yet well understood. To address this knowledge gap, we improved a coupled hydrology and stream temperature modeling system, distributed hydrology soil vegetation model and river basin model (DHSVM-RBM), to account for the thermal effect of cool snowmelt runoff on river temperatures. The model was applied to a snow-fed river basin in the Pacific Northwest to evaluate the responses of snow, hydrology, stream temperatures, and fish growth potential to future climates. Historical simulations suggest that snowmelt can notably reduce the basin-wide peak summer temperatures particularly at high-elevation tributaries, while the thermal impacts of melt water can persist through the summer along the mainstem. Ensemble climate projections suggested that a warming climate will decrease basin mean peak snow and summer streamflow by 92% and 60% by the end of the century. Due to the compounded influences of warmer temperatures, lower flows and diminished cooling from melt, river reaches in high elevation snow-dominated areas were projected to be most vulnerable to future climate change, showing the largest increases in summer peak temperatures. As a result, thermal habitat used by anadromous Pacific salmon was projected to exhibit substantially lower growth potential during summer in the future. These results have demonstrated the necessity of accounting for snowmelt influence on stream temperature modeling in mountainous watersheds.
Funder
U.S. Bureau of Indian Affairs
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Reference63 articles.
1. A comparison of statistical downscaling methods suited for wildfire applications;Abatzoglou;Int. J. Climatol.,2012
2. From projected species distribution to food-web structure under climate change;Albouy;Glob. Change Biol.,2014
3. Bioenergetic responses by Pacific Salmon to climate and ecosystem variation;Beauchamp;North Pacific Anadromous Fish Comm. Bull.,2007
4. The thermal regime of rivers: a review;Caissie;Freshw. Biol.,2006
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献