Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation

Author:

Kaandorp Mikael L AORCID,Dijkstra Henk AORCID,van Sebille ErikORCID

Abstract

Abstract Field studies in the global ocean have shown that plastic fragments make up the majority of plastic pollution in terms of abundance. It is not well understood how quickly plastics in the marine environmental fragment, however. Here, we study the fragmentation process in the oceanic environment by considering a model which captures continuous fragmentation of particles over time in a cascading fashion. With this cascading fragmentation model we simulate particle size distributions (PSDs), specifying the abundance or mass of particles for different size classes. The fragmentation model is coupled to an environmental box model, simulating the distributions of plastic particles in the ocean, coastal waters, and on the beach. We demonstrate the capabilities of the model by calibrating it to estimated plastic transport in the Mediterranean Sea, and compare the modelled PSDs to available observations in this region. Results are used to illustrate the effect of size-selective processes such as vertical mixing in the water column and resuspension of particles from the beach into coastal waters. The model quantifies the role of fragmentation on the marine plastic mass budget: while fragmentation is a major source of secondary plastic particles in terms of abundance, it seems to have a minor effect on the total mass of particles larger than 0.1 mm. Future comparison to observed PSD data allow us to understand size-selective plastic transport in the environment, and potentially inform us on plastic longevity.

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3