Model exploration of microplastic effects on zooplankton grazing reveal potential impacts on the global carbon cycle

Author:

Richon CamilleORCID,Gorgues Thomas,Cole Matthew,Paul-Pont Ika,Maes ChristopheORCID,Tagliabue Alessandro,Laufkötter Charlotte

Abstract

Abstract Amongst the increasing number of anthropogenic stress factors threatening ocean equilibrium, microplastics (MP; < 5 mm) have emerged as particularly worrisome. In situ observations have shown that MP accumulate in large areas at the surface ocean where it may threaten the functioning marine species. In particular, experimental evidence has shown that the grazing rates of several zooplankton species may be significantly altered by MP. These direct impacts on zooplankton may alter nutrient and carbon cycling. However, how these laboratory results may translate into impacts on the global ocean is yet unknown. Here, we use a global coupled physical-biogeochemical model including MP (NEMO/PISCES-PLASTIC) to investigate the impacts of MP exposure on zooplankton grazing rates. Drawing from experimental results, we use varying water contamination impact thresholds to explore the biogeochemical consequences of MP impacts on short (10 years) and long timescales (100 years). Our simulations show that the geographical extent of MP impacts on zooplankton remains restricted to about 10% of the global ocean surface, even after 100 years of constant MP contamination. However, in the most contaminated regions (e.g. the sub-tropical gyres), [MP] has surged from a few mg m−3 to > 50 mg m−3. Despite their oligotrophic nature and limited contribution to the overall ocean carbon cycle, MP impacts on zooplankton grazing could disrupt carbon cycling in these highly contaminated regions (up to 50% reduction in yearly primary production, carbon export fluxes and organic matter remineralisation after 100 years). Our research suggests that persistent MP pollution in the ocean could diminish primary production by 4%. In spite of the large sensitivity of our results to the water contamination impact threshold, we suggest MP impacts on zooplankton grazing may cause an annual loss of 1 Gt yr−1 of exported carbon after 100 years, if MP inputs remain constant globally.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Institut des Sciences du Calcul et des Données (ISCD) Sorbonne Université

ISblue

Natural Environmental Research Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3