Unique water scarcity footprints and water risks in US meat and ethanol supply chains identified via subnational commodity flows

Author:

Brauman Kate AORCID,Goodkind Andrew L,Kim TaegonORCID,Pelton Rylie E OORCID,Schmitt Jennifer,Smith Timothy M

Abstract

Abstract Within the US, supply chains aggregate agricultural production and associated environmental impacts in specific downstream products and companies. This is particularly important for meat and ethanol, which consume nearly half of global crop production as feed and feedstocks. However, lack of data has thus far limited the ability to trace inputs and impacts of commodity crops through domestic supply chains. For the first time, we use a commodity-flow model to link spatially distributed water resource impacts of corn and soy to individual meat and ethanol processing facilities. This creates transparency in the supply chains, illuminating substantial variation in embedded irrigation water and water scarcity footprints among meat and ethanol processed at different facilities. By calculating unique blue water scarcity footprints for end-products, we show that beef processed in Iowa or Illinois, for example, has fewer water impacts than chicken processed in California and pork processed in Oklahoma. We find that over 75% of irrigated feed embedded in meat is consolidated in six companies and 39% of irrigated feedstock for ethanol is consolidated in five companies, with potentially negative impacts to supply costs and risk management. This subnational variation and consolidation of impacts in key supply chains creates opportunities for producers and consumers of agriculture-based products to make management, investment, and sustainability decisions about those products.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3