Lichen cover mapping for caribou ranges in interior Alaska and Yukon

Author:

Macander Matthew JORCID,Palm Eric CORCID,Frost Gerald VORCID,Herriges Jim D,Nelson Peter R,Roland Carl,Russell Kelsey L M,Suitor Mike J,Bentzen Torsten W,Joly Kyle,Goetz Scott JORCID,Hebblewhite MarkORCID

Abstract

Abstract Previous research indicates that the effects of climate warming, including shrub expansion and increased fire frequency may lead to declining lichen abundance in arctic tundra and northern alpine areas. Lichens are important forage for caribou (Rangifer tarandus), whose populations are declining throughout most of North America. To clarify how lichen cover might affect caribou resource selection, ecologists require better data on the spatial distribution and abundance of lichen. Here, we use a combination of field data and satellite imagery to model lichen cover for a 583 200 km2 area that fully encompasses nine caribou ranges in interior Alaska and Yukon. We aggregated data from in situ vegetation plots, aerial survey polygons and unmanned aerial vehicle (UAV) imagery to align with 30 m resolution Landsat pixels. We used these data to train a random forest model with a suite of environmental and spectral predictors to estimate lichen cover. We validated our lichen cover model using reserved training data and existing external datasets, and found that reserved data from aerial survey polygons (R 2 = 0.77) and UAV imagery (R 2 = 0.71) provided the best fit. We used our lichen cover map to evaluate the influence of estimated lichen cover on caribou resource selection in the Fortymile Herd from 2012 to 2018 during summer and winter. In both seasons, caribou avoided lichen-poor areas (0%–5% lichen cover) and showed stronger selection as lichen cover increased to ∼30%, above which selection leveled off. Our results suggest that terrestrial lichen cover is an important factor influencing caribou resource selection in northern boreal forests across seasons. Our lichen cover map goes beyond existing maps of lichen abundance and distribution because it incorporates extensive field data for model training and validation and estimates lichen cover over a much larger spatial extent. We expect our landscape-scale map will be useful for understanding trends in lichen abundance and distribution, as well as for caribou research, management and conservation.

Funder

National Aeronautics and Space Administration

Montana Institute on Ecosystems

Wildlife Conservation Society Canada

Yukon Government - Department of Environment

University of Montana

National Park Service

U.S. Bureau of Land Management

Alaska Department of Fish and Game

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3