A hierarchical, multi‐sensor framework for peatland sub‐class and vegetation mapping throughout the Canadian boreal forest

Author:

Pontone Nicholas1ORCID,Millard Koreen1,Thompson Dan K.2,Guindon Luc3,Beaudoin André3

Affiliation:

1. Department of Geography and Environmental Studies Carleton University Ottawa Ontario Canada

2. Great Lakes Forestry Centre Natural Resources Canada, Canadian Forest Service Sault Ste. Marie Ontario Canada

3. Laurentian Forestry Centre Natural Resources Canada, Canadian Forest Service Quebec City Québec Canada

Abstract

AbstractPeatlands in the Canadian boreal forest are being negatively impacted by anthropogenic climate change, the effects of which are expected to worsen. Peatland types and sub‐classes vary in their ecohydrological characteristics and are expected to have different responses to climate change. Large‐scale modelling frameworks such as the Canadian Model for Peatlands, the Canadian Fire Behaviour Prediction System and the Canadian Land Data Assimilation System require peatland maps including information on sub‐types and vegetation as critical inputs. Additionally, peatland class and vegetation height are critical variables for wildlife habitat management and are related to the carbon cycle and wildfire fuel loading. This research aimed to create a map of peatland sub‐classes (bog, poor fen, rich fen permafrost peat complex) for the Canadian boreal forest and create an inventory of peatland vegetation height characteristics using ICESat‐2. A three‐stage hierarchical classification framework was developed to map peatland sub‐classes within the Canadian boreal forest circa 2020. Training and validation data consisted of peatland locations derived from various sources (field data, aerial photo interpretation, measurements documented in literature). A combination of multispectral data, L‐band SAR backscatter and C‐Band interferometric SAR coherence, forest structure and ancillary variables was used as model predictors. Ancillary data were used to mask agricultural areas and urban regions and account for regions that may exhibit permafrost. In the first stage of the classification, wetlands, uplands and water were classified with 86.5% accuracy. In the second stage, within the wetland areas only, peatland and mineral wetlands were differentiated with 93.3% accuracy. In the third stage, constrained to only the peatland areas, bogs, rich fens, poor fens and permafrost peat complexes were classified with 71.5% accuracy. Then, ICESat‐2 ATL08 spaceborne lidar data were used to describe regional variations in peatland vegetation height characteristics and regional and class‐wise variations based on a boreal forest wide sample. This research introduced a comprehensive large‐scale peatland sub‐class mapping framework for the Canadian boreal forest, presenting the first moderate resolution map of its kind.

Funder

Canadian Space Agency

Natural Sciences and Engineering Research Council of Canada

Weston Family Foundation

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New insights into distinguishing temperate deciduous swamps from upland forests and shrublands with SAR;Remote Sensing of Environment;2024-12

2. Carbon Stocks and Fluxes From a Boreal Conifer Swamp: Filling a Knowledge Gap for Understanding the Boreal C Cycle;Journal of Geophysical Research: Biogeosciences;2024-05

3. Unveiling Hidden Patterns: Harnessing the Matrix Profile Algorithm for Enhanced Peatland Monitoring and Analysis;2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3