Increasing influence of evapotranspiration on prolonged water storage recovery in Germany

Author:

Boeing FriedrichORCID,Wagener ThorstenORCID,Marx AndreasORCID,Rakovec OldrichORCID,Kumar RohiniORCID,Samaniego LuisORCID,Attinger SabineORCID

Abstract

Abstract Central Europe, including Germany, has faced exceptional multi-year terrestrial water storage (TWS) deficits since 2018, negatively impacting various sectors such as forestry, energy production, and drinking water supply. Currently, the understanding of the recovery dynamics behind such extreme events is limited, which hampers accurate water management decisions. We used a simulation of the mesoscale hydrological model (mHM) over the last 257 years (1766–2022) to provide the first long-term perspective on the dynamics of the TWS deficit recovery in Germany. The results show that severe TWS deficits surpassing a peak deficit of −42 mm (−15 km3) exhibit large variability in recovery times (3–31 months). The 2018–2021 TWS deficit period was unprecedented in terms of recovery time (31 months), mean intensity and the associated negative 30-year TWS trend. In recent decades, we identified increased evapotranspiration (E) fluxes that have impacted TWS dynamics in Germany. Increased E flux anomalies contributed to prolonged TWS recovery, given that the TWS deficit did not quickly recover through above-average precipitation (P). An extreme TWS deficit similar to that in 2018 was recovered by above-average P within three months in the winter of 1947–1948. Our research contributes to an improved understanding of the dynamics and drivers of TWS deficit recovery.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3