Abstract
Abstract
China is highly susceptible to landslides and debris flow disasters as it is a mountainous country with unique topography and monsoon climate. In this study, an efficient statistical model is used to predict the landslide risk in China under the Representative Concentration Pathway 8.5 by 2050, with the precipitation data from global climate models (GCMs) as the driving field. Additionally, for the first time, the impact of future changes in land use types on landslide risk is explored. By distinguishing between landslide susceptibility and landslide risk, the results indicate that the landslide susceptibility in China will change in the near future. The occurrence of high-frequency landslide risks is concentrated in southwestern and southeastern China, with an overall increase in landslide frequency. Although different GCMs differ in projecting the future spatio-temporal distribution of precipitation, there is a consensus that the increased landslide risk in China’s future is largely attributed to the increase in extremely heavy precipitation. Moreover, alterations in land use have an impact on landslide risk. In the Huang-Huai-Hai Plain, Qinghai Tibet Plateau, and Loess Plateau, changes in land types can mitigate landslide risks. Conversely, in other areas, such changes may increase the risk of landslides. This study aims to facilitate informed decision-making and preparedness measures to protect lives and assets in response to the changing climate conditions.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献