Climate-induced fire regime amplification in Alberta, Canada

Author:

Whitman EllenORCID,Parks Sean AORCID,Holsinger Lisa MORCID,Parisien Marc-AndréORCID

Abstract

Abstract Acting as a top-down control on fire activity, climate strongly affects wildfire in North American ecosystems through fuel moisture and ignitions. Departures from historical fire regimes due to climate change have significant implications for the structure and composition of boreal forests, as well as fire management and operations. In this research, we characterize the relationship between trends in climate and fire regime characteristics, for a study area predominantly in Alberta, Canada. We examined trends of fire and climate in northwestern boreal forests using time series analysis of downscaled historical annual climate, fire history (1970–2019), and fire severity (the impacts of wildfire on plants and organic biomass; 1985–2018). We represented fire severity using the relativized burn ratio (RBR) calculated from multispectral Landsat imagery. The climate of the study area has significantly warmed and dried over the past 50 years. Over the same period the annual number of large wildfires, area burned, and fire sizes in the study area significantly increased. Furthermore, the likelihood, area, and number of extreme short-interval reburns (≤15 years between fires; 1985–2019) also significantly increased. During the study period, the portion of forested unburned islands within fire perimeters significantly declined, and fire severity (RBR) increased in open conifer and mixedwood forests. These fire regime changes are significantly correlated with annual climate variability, and a path analysis supports the hypothesis that annual climate patterns have led to fire regime shifts. The increasing fire activity in this region has implications for forest ecology and habitat availability, as the disruption of the fire regime is likely to alter forest recovery. Managers may face increasing challenges to fire suppression if the observed trends of increasing hotter and drier annual climate in the study area persist, driving extreme fire activity.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3