Permafrost thermal conditions are sensitive to shifts in snow timing

Author:

Jan AhmadORCID,Painter Scott L

Abstract

Abstract Changes in snow precipitation at high latitudes can significantly affect permafrost thermal conditions and thaw depth, potentially exposing more carbon-laden soil to microbial decomposition. A fully coupled process-based surface/subsurface thermal hydrology model with surface energy balance is used to analyze the impact of intra-annual variability in snow on permafrost thermal regime and the active layer thickness. In the four numerical scenarios considered, simulations were forced by the same meteorological data, except the snow precipitation, which was systematically altered to change timing of snowfall. The scenarios represent subtle shifts in snow timing, but the snow onset/melt days, the end of winter snowpack depth, and total annual snow precipitation are unchanged among scenarios. The simulations show that small shifts in the timing of snow accumulation can have significant effects on subsurface thermal conditions leading to active layer deepening and even talik formation when snowfall arrives earlier in the winter. The shifts in snow timing have a stronger impact on wetter regions, especially soil underneath small ponds, as compared to drained regions. This study highlights the importance of understanding potential changes in winter precipitation patterns for reliable projections of active-layer thickness in a changing Arctic climate.

Funder

Office of Science

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3