Africa’s ecosystems exhibit a tradeoff between resistance and stability following disturbances

Author:

Lauer Daniel AORCID,McGuire Jenny LORCID

Abstract

Abstract Environmental disturbances may prevent ecosystems from consistently performing their critical ecological functions. Two important properties of ecosystems are their resistance and stability, which respectively reflect their capacities to withstand and recover from disturbance events (e.g. droughts, wildfires, pests, etc). Theory suggests that resistant and stable ecosystems possess opposing characteristics, but this has seldom been established across diverse ecosystem attributes or broad spatial scales. Here, we compare the resistance and stability of >1000 protected area ecosystems in Africa to disturbance-induced losses in primary productivity from 2000 to 2019. We quantitatively evaluated each ecosystem such that following disturbances, an ecosystem is more resistant if it experiences lower-magnitude losses in productivity, and more stable if it returns more rapidly to pre-disturbance productivity levels. To compare the characteristics of resistant versus stable ecosystems, we optimized random forest models that use ecosystem attributes (representing their climatic and environmental conditions, plant and faunal biodiversity, and exposure to human impacts) to predict their resistance and, separately, stability values. We visualized each attribute’s relationship with resistance and stability after accounting for all other attributes in the model framework. Ecosystems that are more resistant to disturbances are less stable, and vice versa. The ecosystem attributes with the most predictive power in our models all exhibit contrasting relationships with resistance versus stability. Notably, highly resistant ecosystems are generally more arid and exhibit high habitat heterogeneity and mammalian biodiversity, while highly stable ecosystems are the opposite. We discuss the underlying mechanisms through which these attributes engender resistance or, conversely, stability. Our findings suggest that resistance and stability are fundamentally opposing phenomena. A balance between the two must be struck if ecosystems are to maintain their identity, structure, and function in the face of environmental change.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference90 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3