Consequences of agricultural total factor productivity growth for the sustainability of global farming: accounting for direct and indirect land use effects

Author:

Villoria Nelson

Abstract

Abstract Most of the growth in agricultural output in the last thirty years comes from increases in the efficiency with which both land and non-land inputs are used. Recent work calls for a better understanding of whether this efficiency, known as total factor productivity (TFP), contributes to a more sustainable food system. Key to this understanding is the documented phenomenon that, instead of saving lands, the introduction of technologies that improve agricultural productivity encourage cropland expansion. We extend the results of a recently published econometric model of cross-country cropland change and TFP growth to explore the extent to which improvements in technology were associated with lower greenhouse emissions from land conversion to agriculture as well as with lower land conversion pressures in biodiversity-rich biomes. We focus on the decade of 2001–2010, a period in which our sample of 70 countries (≈75% of global croplands) experienced net land contraction. Except in sub-Saharan Africa and South and East Asia, regional TFP growth was associated with regional land expansion, thus confirming the existence of Jevons paradox in most regions of the world. However, such expansion was more than offset by indirect land use effects stemming from increases in productivity somewhere else. These indirect effects are far from trivial. In the absence of TFP growth, our estimates suggest that ≈125 Mha would have been needed to satisfy demand, half of which are in the four most biodiverse biomes of the world; estimated land use emissions from the ensuing changes in land use range from a lower bound of 17 Gt CO2eq to an upper bound of 84 Gt CO2eq, depending on whether the expansion would have occurred on pasturelands or forest, in contrast to the ≈1 to 15 Gt CO2eq imputed to observed cropland expansion. Our projections of the land needed to satisfy projected growth in TFP per capita during 2018–2023 indicate that current rates of TFP growth are insufficient to prevent further land expansion, reversing in most cases the in-sample trends in land contraction observed during 2001–2010.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference68 articles.

1. Jevons’ paradox;Alcott;Ecol. Econ.,2005

2. Spillovers;Alston;Aust. J. Agric. Resour. Econ.,2002

3. Agriculture in the global economy;Alston;J. Econ. Perspect.,2014

4. Infrastructure and aggregate agricultural productivity: international evidence;Antle;Econ. Dev. Cultural Change,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3