Statistical seasonal forecasting of tropical cyclones over the western North Pacific

Author:

Chan Kelvin T FORCID,Dong Zhenyuan,Zheng Minglin

Abstract

Abstract Forecasting tropical cyclone (TC) activities has been a topic of great interest and research. Many studies and existing seasonal forecasting models have examined and predicted the number of TCs (including geneses and landfalls) mainly based on the environmental factors in the peak TC season. However, these predictions can be time-consuming, computationally expensive and uncertain, depending on the efficiency and predictability of the dynamical models. Therefore, here we propose an effective statistical seasonal forecasting model, namely the Sun Yat-sen University (SYSU) Model, for predicting the number of TCs (intensity at tropical storm or above) over the western North Pacific based on the environmental factors in the preseason. The nine categories comprising 103 candidate predictors in 1980–2015 (36 years) are systematically investigated. The best subset selection regression shows that the sea surface temperatures at the tropical North Atlantic and eastern North Pacific in April, the 500 hPa geopotential height difference between April and January at the open ocean southwest of Australia and the 700 hPa geopotential height at the North Pacific in April are the most significant predictors. The correlation coefficient between the modeled results and observations reaches 0.89. The model is successfully validated by leave-one-out, nine-fold cross-validations, and later 5 year (2016–2020) observations. The prediction of the SYSU Model exhibits a 95% hit rate in 1980–2020 (39 out of 41), suggesting an operational potential in the seasonal forecasting of TCs over the western North Pacific.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key R&D Program of China

Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies

National Natural Science Foundation of China and Macau Science and Technology Development Joint Fund

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3