Abstract
Abstract
An increase in the frequency of extremely hot and dry events has been experienced over the past few decades in South America, and particularly in Brazil. Regional climate change projections indicate a future aggravation of this trend. However, a comprehensive characterization of drought and heatwave compound events, as well as of the main land–atmosphere mechanisms involved, is still lacking for most of South America. This study aims to fill this gap, assessing for the first time the historical evolution of compound summer drought and heatwave events for the heavily populated region of Southeast Brazil and for the period of 1980–2018. The main goal is to undertake a detailed analysis of the surface and synoptic conditions, as well as of the land–atmosphere coupling processes that led to the occurrence of individual and compound dry and hot extremes. Our results confirm that the São Paulo, Rio de Janeiro and Minas Gerais states have recorded pronounced and statistically significant increases in the number of compound summer drought and heatwave episodes. In particular, the last decade was characterized by two austral summer seasons (2013/14 and 2014/15) with outstanding concurrent drought and heatwave conditions stemmed by severe precipitation deficits and a higher-than-average occurrence of blocking patterns. As result of these land and atmosphere conditions, a high coupling (water-limited) regime was imposed, promoting the re-amplification of hot spells that resulted in mega heatwave episodes. Our findings reveal a substantial contribution of persistent dry conditions to heatwave episodes, highlighting the vulnerability of the region to climate change.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
European Research Council
Fundação para a Ciência e a Tecnologia
European Cooperation in Science and Technology
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献