Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013)

Author:

Manning ColinORCID,Widmann MartinORCID,Bevacqua EmanueleORCID,Van Loon Anne FORCID,Maraun DouglasORCID,Vrac Mathieu

Abstract

Abstract The propagation of drought from meteorological drought to soil moisture drought can be accelerated by high temperatures during dry periods. The occurrence of extremely long-duration dry periods in combination with extremely high temperatures may drive larger soil moisture deficits than either extreme occurring alone, and lead to severe impacts. In this study, we propose a framework to both characterise long-duration meteorological droughts that co-occur with extremely high temperatures and quantify their probability. We term these events as long-duration, dry and hot (DH) events and characterise them by their duration (D) and magnitude (M). D is defined as the consecutive number of days with precipitation below 1 mm, while M is the maximum daily maximum temperature during an event. A copula-based approach is then employed to estimate the probability of DH events. The framework is applied to Europe during the summer months of June, July and August. We also assess the change in probability that has occurred over the historical period 1950–2013 and find an increased probability of DH events throughout Europe where rising temperatures are found to be the main driver of this change. Dry periods are becoming hotter, leading to an increase in the occurrence of long-duration dry periods with extremely high temperatures. Some parts of Europe also show an increased probability of long-duration events although the relative change is not as strong as that seen with temperature. The results point to a predominant thermodynamic response of DH events to global warming and reaffirm previous research that soil moisture drought events are setting in faster and becoming more severe due to a change in the contributing meteorological hazards. It is hoped that the framework applied here will provide a starting point for further analysis of DH events in other locations and for the assessment of climate models.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3