Abstract
Abstract
Concurrent compound heatwaves (CCHWs) occurring simultaneously in multiple regions in the Northern Hemisphere (NH) pose high-end risks to human health and global supply chains. Over the past decade, CCHWs related to human health have substantially increased in occurrence. However, the mechanisms of the CCHWs remain uncertain. This work has revealed a significant relationship between the variability of summer CCHWs in the NH and changes in quasi-stationary waves during 1979–2021, which can be attributed to the variation of summer snow cover over the western Tibetan Plateau (SC_WTP). Excessive SC_WTP causes diabatic cooling by modulating the surface energy budget and stimulating a tripolar Rossby wave source. The atmospheric response to the SC_WTP-driven disturbance manifests as a circumglobal circulation pattern, weakening the meridional temperature gradients and causing a ‘double jet stream’ in the NH. These changes modulate the phase, amplitude and proportion of quasi-stationary waves with wavenumbers 4–6, leading to an increase in CCHWs in the NH. In addition, population exposure to CCHWs reaches 4.91 billion person-day when the SC_WTP increases by one standard deviation. Our study highlights the significance of early warning and forecasting implications related to SC_WTP for CCHWs that impact human health within the context of climate change.
Funder
National Natural Science Foundation of China
The Fundamental Research Funds for the Central Universities
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献