Embodied emissions in rail infrastructure: a critical literature review

Author:

Olugbenga Olubanjo,Kalyviotis Nikolaos,Saxe ShoshannaORCID

Abstract

Abstract This paper investigates the state of knowledge in quantifying the embodied greenhouse gas (GHG) emissions in rail infrastructure and develops a sketch model for estimating the GHG impact of rail infrastructure based on the literature. A literature review identified 22 publications, containing 57 case studies, at least touching on the embodied GHG for different types of rail infrastructure. The cases studies include high speed rail, intercity rail, light rail, commuter rail, heavy rail, freight, and metro rail. The paper examines the GHG impact per kilometre of rail infrastructure reported across the case studies and compares the boundaries, functional units, methods, and data used. Most studies employed process-based LCA for an attributional analysis. The embodied emissions associated with the case studies range from 0.5 to 12 700 tCO2 km−1; much of the variation is dependent on the proportion of the rail line at-grade, elevated, or in a tunnel. However, large ranges in GHG per kilometre remain after controlling for elevated and tunneled distance. Comparing the embodied emissions across the rail types was challenging, due to the large variations in system boundaries, study goals, and inventory methods adopted in the publications. This review highlights the need for standardization across the reporting of embodied GHG for rail infrastructure to better facilitate hot spot detection, engineering design and GHG policy decision making. The statistical model finds that overall ∼941(±168) tCO2e are embodied per kilometre of rail at-grade, and tunneling has 27 (±5) times more embodied GHG per kilometre than at-grade construction. The statistical model is based on the findings of published literature and does not explicitly consider function, geometry, specifications, emphasis on whole lifecycle, legislative constraints, socio-economic factors, or the physical and environmental conditions of the construction site.

Funder

Metrolinx Crown Agency

Ontario Centres of Excellence

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3