Projected increase in the spatial extent of contiguous US summer heat waves and associated attributes

Author:

Lyon Bradfield,Barnston Anthony G,Coffel EthanORCID,Horton Radley M

Abstract

Abstract The frequency, intensity and duration of heat waves are all expected to increase as the climate warms in response to increasing greenhouse gas concentrations. The focus of this study is on another dimension of heat waves, their spatial extent, something that has not been studied systematically by researchers but has important implications for associated impacts. Of particular interest are spatially contiguous heat wave regions, examined here over the conterminous US for the May–September season in both the current climate and climate model projections from the CMIP5 archive (11 models total) using the RCP4.5 and RCP8.5 radiative forcing scenarios. Given their myriad impacts, heat waves are defined using multiple temperature variables, one which includes atmospheric moisture. In addition to their spatial extent, several other physical attributes are computed across contiguous heat wave regions, including a proxy for energy use. An estimate of the human population exposed to current and future heat waves is also evaluated. We find that historical climate model simulations, in aggregate, show good fidelity in capturing key characteristics of heat waves in the current climate while projections show a substantial increase in spatial extent and other attributes by mid-century under both scenarios, though generally less for RCP4.5, as expected. Overall, the study presents a framework for examining the behavior, and associated impacts, of a frequently overlooked aspect of heat waves. The projected increases in the spatial extent and other attributes of heat waves reported here provides a new perspective on some of the potential consequences of the continued increase in atmospheric greenhouse gas concentrations.

Funder

Diagnostics, Trends and Climate Model Projections of U.S. Summer Heat Waves

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3