Pitfalls in diagnosing temperature extremes

Author:

Brunner LukasORCID,Voigt AikoORCID

Abstract

AbstractWorsening temperature extremes are among the most severe impacts of human-induced climate change. These extremes are often defined as rare events that exceed a specific percentile threshold within the distribution of daily maximum temperature. The percentile-based approach is chosen to follow regional and seasonal temperature variations so that extremes can occur globally and in all seasons, and frequently uses a running seasonal window to increase the sample size for the threshold calculation. Here, we show that running seasonal windows as used in many studies in recent years introduce a time-, region-, and dataset-depended bias that can lead to a striking underestimation of the expected extreme frequency. We reveal that this bias arises from artificially mixing the mean seasonal cycle into the extreme threshold and propose a simple solution that essentially eliminates it. We then use the corrected extreme frequency as reference to show that the bias also leads to an overestimation of future heatwave changes by as much as 30% in some regions. Based on these results we stress that running seasonal windows should not be used without correction for estimating extremes and their impacts.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3