Airborne observations of arctic-boreal water surface elevations from AirSWOT Ka-Band InSAR and LVIS LiDAR

Author:

Fayne Jessica VORCID,Smith Laurence CORCID,Pitcher Lincoln HORCID,Kyzivat Ethan DORCID,Cooley Sarah WORCID,Cooper Matthew GORCID,Denbina Michael W.ORCID,Chen Albert C.ORCID,Chen Curtis W.,Pavelsky Tamlin M.ORCID

Abstract

Abstract AirSWOT is an experimental airborne Ka-band radar interferometer developed by NASA-JPL as a validation instrument for the forthcoming NASA Surface Water and Ocean Topography (SWOT) satellite mission. In 2017, AirSWOT was deployed as part of the NASA Arctic Boreal Vulnerability Experiment (ABoVE) to map surface water elevations across Alaska and western Canada. The result is the most extensive known collection of near-nadir airborne Ka-band interferometric synthetic aperture radar (InSAR) data and derivative high-resolution (3.6 m pixel) digital elevation models to produce water surface elevation (WSE) maps. This research provides a synoptic assessment of the 2017 AirSWOT ABoVE dataset to quantify regional WSE errors relative to coincident in situ field surveys and LiDAR data acquired from the NASA Land, Vegetation, and Ice Sensor (LVIS) airborne platform. Results show that AirSWOT WSE data can penetrate cloud cover and have nearly twice the swath-width of LVIS as flown for ABoVE (3.2 km vs. 1.8 km nominal swath-width). Despite noise and biases, spatially averaged AirSWOT WSEs can be used to estimate sub-seasonal hydrologic variability, as confirmed with field GPS surveys and in situ pressure transducers. This analysis informs AirSWOT ABoVE data users of known sources of measurement error in the WSEs as influenced by radar parameters including incidence angle, magnitude, coherence, and elevation uncertainty. The analysis also provides recommended best practices for extracting information from the dataset by using filters for these four parameters. Improvements to data handing would significantly increase the accuracy and spatial coverage of future AirSWOT WSE data collections, aiding scientific surface water studies, and improving the platform’s capability as an airborne validation instrument for SWOT.

Funder

NASA Terrestrial Ecology

NASA SWOT Science Team

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3