Increased population exposure to precipitation extremes under future warmer climates

Author:

Chen HuopoORCID,Sun Jianqi,Li Huixin

Abstract

Abstract Precipitation extremes are among the most dangerous climate-related hazards, and these hazards often cause large socioeconomic losses and exert severe human health impacts each year. It is thus crucial to assess future exposure changes to precipitation extremes under different warming scenarios to improve the mitigation of climate change. Here, we project future exposure using a set of Coupled Earth System Model low-warming simulations and RCP8.5 large ensemble simulations. We find that the precipitation extremes are projected to significantly increase over the coming century under different future warming scenarios at both the global and regional levels. Compared to a 1.5 °C warmer climate, the 0.5 °C of additional warming under a 2.0 °C warmer future would increase the number of days of global aggregate precipitation extremes by approximately 3.6% by the end of this century. As a result, the global aggregate exposure is reported to increase by approximately 2.3% if the surface air temperature increases to 2.0 °C rather than 1.5 °C. An increase in exposure is also obvious for most regions across the world, and the largest increase in the future occurs over North Asia in response to the 0.5 °C of additional warming. Furthermore, exposure would increase more rapidly if the temperature increased following the RCP8.5 pathway. The exposure increase varies at the regional level, but in most cases, climate change shows more influential than that of the population; in addition, this influence does not depend on the population outcomes used here.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3