Spatial-temporal assessment of future population exposure to compound extreme precipitation-high temperature events across China

Author:

Jin Ke,Wu Yanjuan,Sun Xiaolin,Sun Yanwei,Gao ChaoORCID

Abstract

Global warming has increased the probability of extreme climate events, with compound extreme events having more severe impacts on socioeconomics and the environment than individual extremes. Utilizing the Coupled Model Intercomparison Project Phase 6 (CMIP6), we predicted the spatiotemporal variations of compound extreme precipitation-high temperature events in China under three Shared Socioeconomic Pathways (SSPs) across two future periods, and analyzed the changes in exposed populations and identified influencing factors. From the result, we can see that, the CMIP6 effectively reproduces precipitation patterns but exhibits biases. The frequency of compound event rises across SSPs, especially under high radiative forcing, with a stronger long-term upward trend. Furthermore, the economically developed areas, notably China’s southeastern coast and North China Plain, will be hotspots for frequent and intense compound extreme events, while other regions will see reduced exposure. Finally, in the long-term future (2070–2100), there is a noteworthy shift in population exposure to compound events, emphasizing the increasing influence of population factors over climate factors. This highlights the growing importance of interactions between population and climate in shaping exposure patterns.

Publisher

Public Library of Science (PLoS)

Reference39 articles.

1. IPCC. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (eds.). Cambridge University Press., 2021.

2. Enviromedics

3. Impacts of compounding drought and heatwave events on child mental health: insights from a spatial clustering analysis;K Sewell;Discover mental health,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3