Quantifying uncertainty in European climate projections using combined performance-independence weighting

Author:

Brunner LukasORCID,Lorenz RuthORCID,Zumwald MariusORCID,Knutti RetoORCID

Abstract

Abstract Uncertainty in model projections of future climate change arises due to internal variability, multiple possible emission scenarios, and different model responses to anthropogenic forcing. To robustly quantify uncertainty in multi-model ensembles, inter-dependencies between models as well as a models ability to reproduce observations should be considered. Here, a model weighting approach, which accounts for both independence and performance, is applied to European temperature and precipitation projections from the CMIP5 archive. Two future periods representing mid- and end-of-century conditions driven by the high-emission scenario RCP8.5 are investigated. To inform the weighting, six diagnostics based on three observational estimates are used to also account for uncertainty in the observational record. Our findings show that weighting the ensemble can reduce the interquartile spread by more than 20% in some regions, increasing the reliability of projected changes. The mean temperature change is most notably impacted by the weighting in the Mediterranean, where it is found to be 0.35 °C higher than the unweighted mean in the end-of-century period. For precipitation the largest differences are found for Northern Europe, with a relative decrease in precipitation of 2.4% and 3.4% for the two future periods compared to the unweighted case. Based on a perfect model test, it is found that weighting the ensemble leads to an increase in the investigated skill score for temperature and precipitation while minimizing the probability of overfitting.

Funder

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3