4DEnVar-based inversion system for ammonia emission estimation in China through assimilating IASI ammonia retrievals

Author:

Jin JianbingORCID,Fang Li,Li Baojie,Liao Hong,Wang Ye,Han Wei,Li KeORCID,Pang MijieORCID,Wu Xingyi,Xiang Lin HaiORCID

Abstract

Abstract Atmospheric ammonia has been hazardous to the environment and human health for decades. Current inventories are usually constructed in a bottom-up manner and subject to uncertainties and incapable of reproducing the spatiotemporal characteristics of ammonia emission. Satellite measurements, for example, Infrared Atmospheric Sounder Interferometer (IASI) and Cross-Track Infrared Sounder, which provide global coverage of ammonia distribution, have gained popularity in ammonia emission estimation through data assimilation methods. However, satellite-based emission inversion studies on China are limited. In this study, we propose a four-dimensional ensemble variational-based ammonia emission inversion system to optimize ammonia emissions in China. It was developed by assimilating the IASI ammonia retrievals onboard Meteorological Operational satellite A and B into a chemical transport model Goddard Earth Observing System Chemical model (GEOS-Chem). Monthly inversion experiments were conducted in April, July, and October 2016 to test the performance. The inversion result indicated that the prior inventory from the MEIC model captured ammonia spreads in general; however, it heterogeneously underrated the emission intensity. The increments obtained in the assimilation were as high as 50% in North, East, and Northwest China. The posterior emission inventory presented a regional emission flux consistent with relevant studies. Driven by the optimized source estimate, GEOS-Chem provides superior results than using the prior in the evaluation of the assimilated IASI retrievals and the surface ammonia concentration measured by the ground-based Ammonia Monitoring Network in China.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3