High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model

Author:

Chen Yilin,Shen HuizhongORCID,Kaiser Jennifer,Hu Yongtao,Capps Shannon L.ORCID,Zhao Shunliu,Hakami AmirORCID,Shih Jhih-ShyangORCID,Pavur Gertrude K.,Turner Matthew D.,Henze Daven K.,Resler JaroslavORCID,Nenes AthanasiosORCID,Napelenok Sergey L.,Bash Jesse O.ORCID,Fahey Kathleen M.,Carmichael Gregory R.,Chai TianfengORCID,Clarisse LievenORCID,Coheur Pierre-François,Van Damme MartinORCID,Russell Armistead G.ORCID

Abstract

Abstract. Ammonia (NH3) emissions have large impacts on air quality and nitrogen deposition, influencing human health and the well-being of sensitive ecosystems. Large uncertainties exist in the “bottom-up” NH3 emission inventories due to limited source information and a historical lack of measurements, hindering the assessment of NH3-related environmental impacts. The increasing capability of satellites to measure NH3 abundance and the development of modeling tools enable us to better constrain NH3 emission estimates at high spatial resolution. In this study, we constrain the NH3 emission estimates from the widely used 2011 National Emissions Inventory (2011 NEI) in the US using Infrared Atmospheric Sounding Interferometer NH3 column density measurements (IASI-NH3) gridded at a 36 km by 36 km horizontal resolution. With a hybrid inverse modeling approach, we use the Community Multiscale Air Quality Modeling System (CMAQ) and its multiphase adjoint model to optimize NH3 emission estimates in April, July, and October. Our optimized emission estimates suggest that the total NH3 emissions are biased low by 26 % in 2011 NEI in April with overestimation in the Midwest and underestimation in the Southern States. In July and October, the estimates from NEI agree well with the optimized emission estimates, despite a low bias in hotspot regions. Evaluation of the inversion performance using independent observations shows reduced underestimation in simulated ambient NH3 concentration in all 3 months and reduced underestimation in NH4+ wet deposition in April. Implementing the optimized NH3 emission estimates improves the model performance in simulating PM2.5 concentration in the Midwest in April. The model results suggest that the estimated contribution of ammonium nitrate would be biased high in a priori NEI-based assessments. The higher emission estimates in this study also imply a higher ecological impact of nitrogen deposition originating from NH3 emissions.

Funder

National Aeronautics and Space Administration

China Scholarship Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3