Irrigation characterization improved by the direct use of SMAP soil moisture anomalies within a data assimilation system

Author:

Kwon Yonghwan,Kumar Sujay V,Navari Mahdi,Mocko David M,Kemp Eric M,Wegiel Jerry W,Geiger James V,Bindlish Rajat

Abstract

Abstract Prior soil moisture data assimilation (DA) efforts to incorporate human management features such as agricultural irrigation has only shown limited success. This is partly due to the fact that observational rescaling approaches for bias correction used in soil moisture DA systems are less effective when unmodeled processes such as irrigation are the dominant source of systematic biases. In this article, we demonstrate an alternative approach, i.e. anomaly correction for overcoming this limitation. Unlike the rescaling approaches, the proposed method does not scale remote sensing soil moisture retrievals to the model climatology, but it extracts the temporal variability information from the retrievals. The study demonstrates this approach through the assimilation of soil moisture retrievals from the Soil Moisture Active Passive mission into the Noah land surface model. The results demonstrate that DA using the anomaly correction method can better capture the effect of irrigation on soil moisture in agricultural areas while providing comparable performance to the DA integrations using rescaling approaches in non-irrigated areas. These findings emphasize the need to reduce inconsistencies between remote sensing and the models so that assimilation methods can employ information from remote sensing more directly to develop representations of unmodeled processes such as irrigation.

Funder

United States Air Force

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3