Irrigation Quantification Through Backscatter Data Assimilation With a Buddy Check Approach

Author:

Busschaert L.1ORCID,Bechtold M.1ORCID,Modanesi S.2ORCID,Massari C.2ORCID,Brocca L.2ORCID,De Lannoy G. J. M.1ORCID

Affiliation:

1. Department of Earth and Environemental Sciences KU Leuven Heverlee Belgium

2. Research Institute for Geo‐hydrological Protection National Research Council Perugia Italy

Abstract

AbstractIrrigation is an important component of the terrestrial water cycle, but it is often poorly accounted for in models. Recent studies have attempted to integrate satellite data and land surface models via data assimilation (DA) to (a) detect and quantify irrigation, and (b) better estimate the related land surface variables such as soil moisture, vegetation, and evapotranspiration. In this study, different synthetic DA experiments are tested to advance satellite DA for the estimation of irrigation. We assimilate synthetic Sentinel‐1 backscatter observations into the Noah‐MP model coupled with an irrigation scheme. When updating soil moisture, we found that the DA sets better initial conditions to trigger irrigation in the model. However, DA updates to wetter conditions can inhibit irrigation simulation. Building on this limitation, we propose an improved DA algorithm using a buddy check approach. The method still updates the land surface, but now the irrigation trigger is not primarily based on the evolution of soil moisture, but on an adaptive innovation (observation minus forecast) outlier detection. The new method was found to be optimal for more temperate climates where irrigation events are less frequent and characterized by higher application rates. It was found that the DA outperforms the model‐only 14‐day irrigation estimates by about 20% in terms of root‐mean‐squared differences, when frequent (daily or every other day) observations are available. With fewer observations or high levels of noise, the system strongly underestimates the irrigation amounts. The method is flexible and can be expanded to other DA systems, also real‐world cases.

Funder

KU Leuven

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3