Water quality trends under rapid agricultural expansion and enhanced in-stream interception in a hilly watershed of Eastern China

Author:

Zhang WangshouORCID,Li Hengpeng,Hyndman David W.ORCID,Diao Yaqin,Geng Jianwei,Pueppke Steven G

Abstract

Abstract Conflicts between agricultural intensification and the increasing demand for clean water resources are growing worldwide. This study sought to understand how the negative consequences of agricultural expansion in fragile hilly watersheds can be mitigated by ecologically based engineering practices. We analyzed long-term and seasonal water quality trends in two sub-watersheds of the Tianmu Lake watershed in Eastern China. The Zhongtian and nearby Zhucao sub-watersheds are very similar in terms of climate, topography and other features that can influence water quality. Both are experiencing rapid expansion of tea plantations, but the Zhongtian River contains an engineered system of overflow dams and cascade wetlands that is absent from the Zhucao River. The multi-year averaged reduction (2009–2018) of total nitrogen (TN) and total phosphorus (TP) from upstream to downstream reaches was 10%–15% greater in the engineered Zhongtian River compared to the non-engineered and free flowing Zhucao River, which has no interventions to reduce nutrient concentrations. Average annual reductions in TN, TP, and total suspended solids (SS) downstream of the engineered system reached 0.5%–4.0% of their multi-year averaged concentrations over this time interval. These reductions occurred despite a 2.3-fold expansion of tea plantation area in the engineered watershed, which contrasts with deteriorating water quality in the non-engineered watershed that had a 0.4-fold expansion of tea plantation area. Our results underscore the value of such engineered systems to improve water quality and help reconcile competing advantages of agricultural development and environmental protection in hilly watersheds, where there is limited in-stream processing of nutrients and the effects of human activities are substantial.

Funder

Thirteenth Five-Year Plan of the Nanjing Institute of Geography and Limnology

National Natural Science Foundation of China

Ecological Civilization Project Towards A Beautiful China

Active Design Project for Agricultural and Social Development in Hangzhou, Zhejiang Province

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3