What are the best combinations of fuel-vehicle technologies to mitigate climate change and air pollution effects across the United States?

Author:

Tong FanORCID,Azevedo Inês M LORCID

Abstract

Abstract The transportation sector is the largest contributor to CO2 emissions and a major source of criteria air pollutants in the United States. The impact of climate change and that of air pollution differ in space and time, but spatially-explicit, systematic evaluations of the effectiveness of alternative fuels and advanced vehicle technologies in mitigating both climate change and air pollution are lacking. In this work, we estimate the life cycle monetized damages due to greenhouse gas emissions and criteria air pollutant emissions for different types of passenger-moving vehicles in the United States. We find substantial spatial variability in the monetized damages for all fuel-vehicle technologies studied. None of the fuel-vehicle technologies leads simultaneously to the lowest climate change damages and the lowest air pollution damages across all U.S. counties. Instead, the fuel-vehicle technology that best mitigates climate change in one region is different from that for the best air quality (i.e. the trade-off between decarbonization and air pollution mitigation). For example, for the state of Pennsylvania, battery-electric cars lead to the lowest population-weighted-average climate change damages (a climate change damage of 0.87 cent/mile and an air pollution damage of 1.71 cent/mile). In contrast, gasoline hybrid-electric cars lead to the lowest population-weighted-average air pollution damages (a climate change damage of 0.92 cent/mile and an air pollution damage of 0.77 cent/mile). Vehicle electrification has great potential to reduce climate change damages but may increase air pollution damages substantially in regions with high shares of coal-fired power plants compared to conventional vehicles. However, clean electricity grid could help battery electric vehicles to achieve low damages in both climate change and air pollution.

Funder

Environmental Protection Agency

Directorate for Social, Behavioral and Economic Sciences

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3