Distributional impacts of fleet-wide change in light duty transportation: mortality risks of PM2.5 emissions from electric vehicles and Tier 3 conventional vehicles

Author:

Singh Madalsa,Tessum Christopher W,Marshall Julian D,Azevedo Inês M LORCID

Abstract

Abstract Light-duty transportation continues to be a significant source of air pollutants that cause premature mortality and greenhouse gases (GHGs) that lead to climate change. We assess PM2.5 emissions and its health consequences under a large-scale shift to electric vehicles (EVs) or Tier-3 internal combustion vehicles (ICVs) across the United States, focusing on implications by states and for the fifty most populous metropolitan statistical areas (MSA). We find that both Tier-3 ICVs and EVs reduce premature mortality by 80%–93% compared to the current light-duty vehicle fleet. The health and climate mitigation benefits of electrification are larger in the West and Northeast. As the grid decarbonizes further, EVs will yield even higher benefits from reduced air pollution and GHG emissions than gasoline vehicles. EVs lead to lower health damages in almost all the 50 most populous MSA than Tier-3 ICVs. Distributional analysis suggests that relying on the current gasoline fleet or moving to Tier-3 ICVs would impact people of color more than White Americans across all states, levels of urbanization, and household income, suggesting that vehicle electrification is more suited to reduce health disparities. We also simulate EVs under a future cleaner electric grid by assuming that the 50 power plants across the nation that have the highest amount of annual SO2 emissions are retired or retrofitted with carbon capture and storage, finding that in that case, vehicle electrification becomes the best strategy for reducing health damages from air pollution across all states.

Funder

TomKat Center for Sustainable Energy, Stanford University

Department of Energy Science and Engineering, Stanford University

Publisher

IOP Publishing

Reference90 articles.

1. USA: cars and light-duty trucks—Tier 1;Emission Standards

2. Final rule for control of air pollution from motor vehicles: tier 3 motor vehicle emission and fuel standards;US EPA

3. Understanding racial disparities in exposure to traffic- related air pollution: considering the spatiotemporal dynamics of population distribution;Park;Int. J. Environ. Res. Public Health,2020

4. Reducing mortality from air pollution in the United States by targeting specific emission sources;Thakrar;Environ. Sci. Technol. Lett.,2020

5. PM2.5 polluters disproportionately and systemically affect people of color in the United States;Tessum;Sci. Adv.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3